Sarge Gerbode Work Flow

Static files

Let me start with the more static data files I use that I modify only occasionally. These are .tsv files I modify that then get converted into .json files

First, there is a file of names, names.tsv

This contains fields separated by tabs.

· Field 1: last name

· Field 2: first name

· Field 3: dates

· Field 4: country of birth

· Field 5: | separated list of countries of residence

· Field 6: | separated list of alternate names

Then there is a list of music types, types.tsv

This is a hierarchical list, because there are many sub-types and sub-types of sub-types. Like there is a type of “dance”, a subtype of which is “court dance”, a subtype of which is “passamezzo”, a subtype of which is “passamezzo moderno”. This file is needed when doing searches by music type. If the user searches for “dance”, all types of dances would be included. If the search is for “passamezzo”, all types of passamezzo would be included, etc.

Finally, there is a list of instrument types, insts.tsv.

Lutes and viols can have a varying number of strings or “courses”.

If a person searches, for, say, 9-course lute, a lute with fewer courses will not be selected, but a lute with more courses (like 10-course) will be. This is because generally a lute (or viol) with more courses can play anything the lute with fewer courses can play. A person who is logged in can specify the instruments or voice types they have access to, and part of the search page allows the user to include only the instruments in that list.

The instruments list is somewhat hierarchical, with fields separated by tabs. E.g., under “f-lute” is “6-course f lute”, “7-course f lute”, etc.

So much for the static data files.

Facsimile Files

I keep a list of image files of original sources of the music, under website/facsimiles, organized by Source and Document. Within each document, the individual pages are contained in files whose file names are page numbers.

The rest of the data is contained entirely in the fronimo or .ft3 music files.

Creating Fronimo Files

The complexity of what I am doing in creating the fronimo music files is because I am trying to do two things while only entering the data once:

1. Produce a file that contains all the data performers need that they can put on a music stand and play off of.

2. Produce a file that can be mined for all the needed data for the database.

Fields:
Title: This often starts with a number indicating position in the document, but need not.
Composer: This could also be the name of an editor, publisher, or compiler, in the case of a book, In the case of a manuscript, it is the name of the person who actually produced the music in the file. If it is not known, it is called “Anonymous”.
Subtitle: This contains miscellaneous other data, such as an alternate title or the name of the lyricist. When a line in the subtitle is enclosed in parentheses, it is used to name an original composer. One composer may, for instance, compose a song. A second composer could make that into an instrumental piece, like a lute solo. The second composer, in that case is “Composer” and the original composer is “Original composer”. If a parenthesis contains a hyphen, the part to the right of the hyphen is the original composer and the part to the left is the subtitle.
Footnote: This has a very strict format. Even slight deviations from this format generate an error message, and the data is lost. It consists of three parts, separated by exactly two spaces.

1. Source: In the case of a music book, this contains the name of the composer, author, compiler, or editor of the volume. This part can be omitted only if the source is exactly the same as the string contained in the “Composer” field. In the case of a manuscript, the source name is that of the library containing the MS. All music libraries contain a library “siglum”, a code specifying the library. The first part of the siglum is one or more upper case letters designating the country, a hyphen, the one or more uppercase letters designating the city and one or more lower case letters designating the library within the city. After the siglum in the footnote may come a “:”, then the human name of the library.

2. Document: In the case of a book, it starts with the title of the book. In the case of MS, it starts with the call number of the MS, followed optionally with a “:” and the human name of the document. If the document is in more than one volume, next comes a comma and the volume designation. Next comes a date designation in parentheses, followed by a comma and a page designation.

3. Page: This specifies where a setting starts. It begins with #, %, p. or f., followed by a page designation. # plus a number gives the order of appearance of the setting in the document, if the page number and the order number are not known. % + a number is just an arbitrary number to separate this page from other pages in the document. Pages are either pages or folios. A folio is a page with two sides, a front side (“recto”) and a back side (“verso”). So if the page designation starts with “p.”, it is followed by a simple number. If it starts with an “f.”, it is followed by a page designation + “v” (only if it’s verso). Folio designations are often started by a letter (a-z or sometimes aa-zz) followed by a number (usually 1-8). If more then one setting start on the same page, the letters a, b, c, etc. are appended to signify the position on the page. Thus we might get a page that looks like f. c3vb, the second setting on the verso side of folio c3. At the end of the document section is a period.

These three fields completely specify the location of the setting and thus constitute a unique key to the setting, because a setting can only be in one place.

4. Credits: The last part of the footnote specifies the encoder (the one who actually produced the fronimo file) and the editor (the one who made sure all was correct).
Section annotations: This is a text field that is part of fronimo that allows the encoder to include additional information the is not printed on the pages the performer will see. This contains information needed by the database, minimally containing key, difficulty level, instrumentation, and music type. Some settings contain different sections. For instance a lute suite may have a prelude, an allemande, a sarabande, These section names are also included in these annotations. Sometimes a setting , or a section of a setting, is divided into parts. So, say, the singer might get one part to read from, the violinist another, the lutenist another. Then there may be a part called “score” containing all the various instruments and voices used in the setting. Every part is of necessity a separate fronimo file.

The URL of a recording can be specified, as well as the location of concordances (other settings of the same piece).

The arranger and/or the contributor of a piece may be specified in Section annotations.

Finally, there is a space for general remarks.

All these things may need to be addressed in creating the fronimo file.
Creating Related Files

Once all the fronimo files are done, the next step is to create midi files, PDF files, and TAB files (another format used by other music programs). For this, I use mpu.py, running it on cygwin. This starts in the base directory and walks through the file hierarchy, creating these files when the date of the fronimo file is later then that of any corresponding midi, PDF, or TAB file. For this, I use a command-line version of fronimo and another program called “midicat”, which concatenates midi files when appropriate. On my home computer, this usually takes 5 or more minutes, depending on the number of new files to be created. Also, one of the peculiarities of fronimo is that the process can be rather slow and can get in the way of doing other things on my computer during this time. Running mpu.py may turn out to be the biggest bottleneck in the process.

If there are any errors, I have re-do all the above steps, starting with correcting the fronimo files.

Mining the Data

For this purpose, I use dft.py This program also walks through the file hierarchy, creating one line in dft.tsv for each fronimo file, containing each of the 32 fields for that file:

Title, Subtitle, Composer, Orig. composer, Footnote, Source, Document, Volume, Date, Page, Editor, Encoder, Arranger, Intabulator, Concordances, Contributor, Info, Piece, Section, Type, Key, Difficulty, Ensemble, Part, Remarks, Recording, Facsimile, Fronimo, PDF, Midi, Modified, Created

This program checks to make sure the fronimo formats are correct. It also checks for correctness of instrument types, music types, and names. It looks for facsimile files to find corresponding sources, documents, and page numbers in the facsimile file hierarchy and, if found, adds them to the record for that fronimo file.

If there are any errors, I have to re-do all the above steps.

Checking for Key Uniqueness

I run sigchk.py to make sure each setting has a unique key. If not, I have to make corrections and re-do all the above steps.

Creating the settings file

I run sl.py to create settings.py, taking as its input dft.tsv.

Uploading the Information

I rsync all the information in the website hierarchy to the server at opalstack and set the permissions appropriately on opalstack.

Generating save.lutemusic.org

I run a script on opalstack that is scripts/load_wp.sh. This often takes 20-30 minutes. The result is the creation of a private website, save.lutemusic.org, that I can check out before going public. The above 2 steps happen if I run “dosave” on cygwin.

Checking the Private Site

I go onto save.lutemusic.org and check to make sure everything came through correctly. If I have to modify anything, I have to go through the whole rigmarole. If I have to do this a few times because of minor glitches, the process can take hours.I

I then run a script on opalstack: scripts/migrate_only.sh to activate and update the public version of the website. I do that by typing “commit” on cygwin.

